143–155.
Danielsson, J. (2011). Risk and crises. VoxEU.org URL:http://voxeu.org/article/risk-and-crises-how-models-failed-and-are-failing.
Dueker, M. J. (1997). Markov switching in garch processes and mean-reverting stock- market volatility. Journal of Business & Economic Statistics, 15(1), 26–34.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50(4), 987–1007.
Engle, R. F. (1995). ARCH: Selected Readings. Oxford: Oxford University Press.
Engle, R. F. (2004). Risk and volatility: Econometric models and financial practice. American Economic Review, 94(3), 405–420.
Fernández, C., & Steel, M. F. J. (1998). On bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359–371.
Francq, C., Roussignol, M., & Zakoian, J.-M. (2001). Conditional heteroskedasticity driven by hidden markov chains. Journal of Time Series Analysis, 22(2), 197–220.
Francq, C., & Zakoian, J.-M. (2005). The structures of standard and switching-regime GARCH models. Stochastic Processes and their Applications, 115(9), 1557–1582.
Francq, C., & Zakoian, J.-M. (2008). Deriving the autocovariances of powers of markov-switching GARCH models, with applications to statistical inference.
Computational Statistics & Data Analysis, 52(6), 3027–3046.
Franses, P. H., & van Dijk, D. (2000). Non-linear time series models in empirical finance. Cambridge: Cambridge University Press.
Geyer, C. (1994). On the convergence of monte carlo maximum likelihood calculations. Journal of the Royal Statistical Society, 56(B), 261–274.
Geyer, C. (1996). Estimation and optimization of functions. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.). MY arkov Chain Monte Carlo in Practice (pp. 241–
258). London: Chapman and Hall.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of
Finance, 48(5), 1779–1801.
Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime- switching process. Journal of Financial Economics, 42(1), 27–62.
Günay, S. (2015). Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns. International
Journal of Energy Economics and Policy, 5(4), 979–985.
Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to markov-switching garch models. Journal of Financial Econometrics, 2(4), 493–530.
Hamida, H., & Scalera, F. (2019). Threshold mean reversion and regime changes of cryptocurrencies using SETAR-MSGARCH models. International Journal of Academic
Research in Accounting, Finance and Management Sciences, 9(3), 221–229.
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.
Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.
Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1–2), 307–333.
Humala, A., & Rodríguez, G. (2013). Some stylized facts of return in the foreign exchange and stock markets in Peru. Studies in Economics and Finance, 30(2), 139–158.
Iqbal, F. (2016). Forecasting Volatility and Value-at-Risk of Pakistan Stock Market with Markov Regime-Switching GARCH Models. European Online Journal Of Natural
And Social Sciences, 5(1), 172–189.
Klaassen, F. (2002). Improving Garch volatility forecasts with regime-switching Garch. Empirical Economics, 27(2), 363–394.
Korkpoe, C., & Howard, N. (2019). Volatility model choice for sub-saharan frontier equity markets – a markov regime switching bayesian approach. Emerging Markets
Journal, 9(1), 69–79.
Lamoureux, C. G., & Lastrapes, W. D. (1990). Persistence in variance, structural change, and the GARCH model. Journal of Business, Economic & Statistics, (2), 225–234.
Liang, H., & Yongcheol, S. (2008). Optimal test for markov switching Garch models. Studies in Nonlinear Dynamics and Econometrics, 12(3), 1–27.
Lolea, I., & Vilcu, L. (2018). Measures of volatility for the Romanian Stock Exchange: A regime switching approach. Proceedings of the International Conference on
Business Excellence, 12, 544–556.
López-Herrera, F., & Mota, M. (2019). Rendimiento y volatilidades de los mercados mexicanos bursátil y cambiario. Revista Mexicana de Economía y Finanzas Nueva
Época REMEF, 14(4), 633–650.
Lorenzo-Valdes, A., Ruiz-Porras A. (2014). A TGARCH model with an asymmetric Students t distribution and the rationality hypothesis of stock investors in Latin
America. MPRA Paper 53019.
Marcucci, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics & Econometrics, 9(4), 1–55.
Moore, T., & Wang, P. (2007). Volatility in stock returns for new eu member states: Markov regime switching model. International Review of Financial Analysis, 16(3),
282–292.
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.
Oseifuah, E., & Korkpoe, C. (2018). Regime changes in the south african rand exchange rate against the dollar. Academy of Accounting and Financial Studies Journal,
22(3), 1–13.
Rodríguez, G. (2016). Modeling latin-american stock markets volatility: Varying probabilities and mean reversion in a random level shifts model. Review of Development
Finance, 6, 26–45.
Rodríguez, G. (2017). Modeling Volatin-american stock and forex markets latility: Empirical application of a model with random level shifts and genuine long memory.
North American Journal of Economics and Finance, 42, 393–420.
Samuelson, P. A. (1970). The Fundamental approximation theory of portfolio analysis in terms of means, variances and higher moments. Review of Economic Studies,
37(4), 537–542.
Shephard, N. (2005). Stochastic volatility: Selected readings. Oxford: Oxford University Press.
Sopipan, N., Intarasit, A., & Chuarkham, K. (2014). Volatility model with markov regime switching to forecast baht/USD. International Journal of Mathematical and
Computational Sciences, 8(5), 776–781.
Taylor, S. J. (1982). Financial returns modelled by the product of two stochasticprocesses-A study of the daily sugar prices 1961–75. Time Series Analysis: Theory and
Practice, 1, 203–226.
Taylor, S. J. (1986). Modelling financial time series. Chichester: John Wiley.
Teräsvirta, T. (2009). An introduction to univariate GARCH models. Handbook of Financial Time Series, 17–42.
Trottier, D. A., & Ardia, D. (2016). Moments of standardized fernandez-steel skewed distributions: applications to the estimation of GARCH-type models. Finance
Research Letters, 18, 311–316.
Visković, J., Arnerić, J., & Rozga, A. (2014). Volatility Switching between Two Regimes. International Journal of Social, Behavioral, Educational, Economic, Business and
Industrial Engineering, 8(3), 699–703.
Wang, P., & Theobald, M. (2008). Regime-switching volatility of six East Asian emerging markets. Research in International Business and Finance, 22(3), 267–283.
Wei, G., & Tanner, M. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical
Association, 85(411), 699–704.
M. Ataurima Arellano and G. Rodríguez
North American Journal of Economics and Finance 52 (2020) 101163
18